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Abstract—Control algorithms for a bihormonal artificial pan-
creas are proposed in such a way that insulin and glucagon
actions are incorporated, aiming to avoid hypoglicemic and hiper-
glicemic episodes. Such control algorithms are utilized in order
to ensure the blood glucose regulation in type 1 diabetic patients.
The mathematical model utilized has experimental validation and
represents the glucose-insulin-glucagon dynamics. First-Order
Sliding Mode Controllers with and without Boundary Layer
were utilized. One desires to reach, in finite time, an equilibrium
condition of the closed-loop control system, even in the presence
of disturbances related to feeding. The stability proof is presented
assuming that the state is known. In the simulation results,
exact differentiators are used in order to recover the information
associated with the unmeasured state variables of the system. At
last, the performance of two control strategy is evaluated by
means of numerical examples.

Index Terms—Uncertain Nonlinear Systems, Biological Mathe-
matics, Bihormonal Control, Diabetes, First-Order Sliding Mode
Control.

I. INTRODUCTION

The pancreas, in addition to its digestive functions, secretes
two important hormones, insulin and glucagon, that are crucial
for normal regulation of blood glucose concentration [1].
When the glucose concentration rises above a certain level,
insulin is secreted; the insulin in turn causes the blood glucose
concentration to drop toward normal. Conversely, a decrease
in blood glucose stimulates glucagon secretion; the glucagon
then functions in the opposite direction to increase and then
steer the glucose back to its normal level.

However, in patients with type 1 diabetes mellitus (T1DM),
pancreatic insulin production is impaired, which entails a
plenty of risks to these patients health. Tight glucose control
reduces the risk of long-term diabetes related complications,
such as kidney disease, heart disease, blindness and peripheral
vascular and nerve damage. Moreover, conventional methods
of self-monitoring of blood glucose and multiple daily injec-
tions are challenging for patients and families [2].

Against such a background, an automated closed-loop glu-
cose control system stands out as a target that has been pursued
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by researchers for the past five decades [3]. Such devices,
known as artificial pancreas [4], [5], consist of a glucose
sensor, from which data are collected and entered into an
algorithm, which in turn compute the amount of insulin to
be delivered through a pump.

In modelling drug delivery to human body, certain require-
ments like finite reaching time and robustness to uncertainties,
should be satisfied [6]. In addition, the glucose-insulin dynam-
ics is a complex physiologic system that encompass a number
of nonlinear process and therefore cannot be accurately de-
scribed through linear models [7].

Sliding Mode Control has been proved an efficient tech-
nique to provide high-fidelity performance in different control
problems for nonlinear systems with uncertainties in system
parameters and external disturbances [8].

Concerning the pump actuator for drug delivery, there is
a question that has generated much controversy in the artifi-
cial pancreas community: to utilize single-hormone systems
employing only insulin or to adopt a dual-hormone strat-
egy adding glucagon administration to insulin delivery. Al-
though insulin-only closed-loop systems achieve a much better
glycemic control than standard open-loop insulin therapy, it
does not completely eliminate the risk of hypoglycaemia [2],
[9].

On the other hand, a closed-loop system that employs
subcutaneous infusion of both insulin and glucagon has proven
its efficacy in preventing and treating hypoglycemia [10], [11].
Moreover, such bihormonal systems would better emulate the
function of the endocrine pancreas [12] and, for this sake, will
be considered in this paper.

The purpose of this contribution is to introduce closed-
loop sliding mode control algorithms capable of regulating the
blood glucose concentration in subjects with T1DM through a
bihormonal pump. A rigorous stability analysis is carried out
by means of Lyapunov’s theory taking into account parametric
uncertainties in the biological model and unmatched distur-
bances due to food intake. Numerical simulations illustrate the
efficience of the proposed First-order Sliding Mode Control
strategy. Implementation aspects concerning chattering allevia-
tion via boundary layers and an output-feedback version of the
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proposed algorithm using higher-order sliding mode (HOSM)
differentitators are also discussed and evaluated.

A. Automatic Control Aspects for Artificial Pancreas

Pumps used for diabetic patients infuse hormone subcu-
taneously. In this sense, in-silico testing of a dual-hormone
control algorithm requires a suitable model that is able to
simulate the effects of subcutaneously administered insulin
and glucagon [13]. In this essay, we implement the model
proposed by [14] extended with glucagon action as proposed
by [15].

Although the extended model doesn’t specify the type of
insulin to be utilized, it suggests the use of a short-acting
analog insulin, such as aspart, lispro and glulisine.

Concerning glucagon, the one commercially available nowa-
days poses risks of occluding the pump catheter due to
its instable formulation. Therefore, commercialization of a
bihormonal pump will require stable glucagon preparations
that can remain in a weareble pump for at least 3-7 days [2].

II. MATHEMATICAL MODELING

Several authors [10], [16], [17] believe a bihormonal closed
loop algorithm could provide a safe blood glucose regulation
and reduce significantly the risk and time spent in hypo-
glycemic episodes compared to usual insulin therapy.

The availability of a model that incorporates glucagon as
a counterregulatory hormone to insulin would allow more
efficient design of bihormonal glucose controllers [10]. In
this sense, an extended minimal model was proposed [15] to
incorporate the glucagon effect.

For simplicity’s sake, we consider in controller design
only the reduced model [15]. Such assumption is reasonable
since some dynamics among all presented in the extended
model are, in general, faster than the dynamics of plasma
glucose concentration, insulin action on glucose production
and glucagon action on glucose production. Therefore, the
dynamics presented in [15] is now represented by:

ẋ1(t) = −(SG + x2(t)− x3(t))x1(t) + SGGB +
1

tmaxGV
d(t) , (1)

ẋ2(t) = −p2(t)x2(t) + p2(t)SI(t)(u
+ − IB) , (2)

ẋ3(t) = −p3(t)x3(t) + p3(t)SN (t)(u
− −NB) , (3)

y(t) = x1(t) , (4)

y(t) [mg/dL] is the output variable, x1(t) [mg/dL] is the
plasma glucose concentration, x2(t) [min−1] is the insulin ac-
tion on glucose production, and x3(t) [min−1] is the glucagon
action on glucose production. V = 1.7 [dL/kg] is the glucose
distribution volume. u+ ∈ R+ [µU/dL] is the control action
and represents the plasma insulin concentration, u− ∈ R+

[pg/dL] is the plasma glucagon concentration, d(t) [mg/kg]
is the glucose concentration resulting from ingested meals
and SG = 0, 014 [min−1] is the glucose effectiveness per
unit distribution volume. For simplicity’s sake, the parameter
tmaxG = 69, 6 [min] was assumed constant, since its fluctu-
ations are too slow, in general [15]. All other variables and
parameters are described in Table I, followed by its respective

units and descriptions. Finally, we remark that if u+ ∈ R+

and u− ∈ R+, it means that the control signals are positive.
The mathematical description of the time-varying parame-

ters is given below:
p2(t) = 0, 01211(t)− 0, 008111(t− 300) + 0, 017111(t− 720)

− 0, 00911(t− 1080) , (5)

p3(t) = 0, 01711(t)− 0, 00111(t− 300) + 0, 12311(t− 720)

− 0, 12211(t− 1080) , (6)

SI(t) = [7, 7311(t) + 0, 8211(t− 300)− 1, 7311(t− 720)

+ 0, 9111(t− 1080)]× 10
−4

, (7)

SN (t) = [1, 3811(t) + 0, 5811(t− 300)− 1, 1511(t− 720)

+ 0, 5711(t− 1080)]× 10
−4

, (8)

IB(t) = 11, 0111(t) + 8, 7511(t− 300)− 9, 7311(t− 720)

+ 0, 9811(t− 1080) , (9)

NB(t) = 46, 3011(t) + 1, 8311(t− 300) + 11, 1011(t− 720)

− 12, 9311(t− 1080) , (10)

where 11(t) represents the unit step function. The delay in
the unit step function is measured in minutes. Therefore, the
functions 11(t − 300), 11(t − 720) and 11(t − 1080) denote
changes in parameters (5)–(10) at 5:00, 12:00 and 18:00,
respectively. The maximum and minimum parameters values
(5)–(10) are given by:

0, 0039 ≤ p2(t) ≤ 0, 021 , (11)
0, 016 ≤ p3(t) ≤ 0, 139 , (12)

6, 82× 10−4 ≤ SI(t) ≤ 8, 55× 10−4 , (13)

0, 81× 10−4 ≤ SN (t) ≤ 1, 96× 10−4 , (14)
10, 03 ≤ IB(t) ≤ 19, 76 , (15)
46, 30 ≤ NB(t) ≤ 59, 23 . (16)

During the development of the stability analysis, the system
parameters will be considered uncertain in such a way that its
bounds are known and described by

p
2
< p2(t) < p2 , p

3
< p3(t) < p3 , (17)

SI < SI(t) < SI , SN < SN (t) < SN , (18)

IB < IB(t) < IB , NB < NB(t) < NB , (19)

tmaxG < tmaxG , GB < GB , V < V , (20)

SG < SG < SG . (21)

Furthermore, we assume that

|d(t)| < d , |ḋ(t)| < ḋ , (22)

where d and ḋ are positive known constants for which (22)
is satisfied, except for a zero measure set in the sense of
Lebesgue

At last, a couple of remarks concerning the hormones units
are presented. Glucagon levels are reported as picogram per
milliliter (pg/mL). Insulin is administrated in units, abbreviated
U (international units). One unit of insulin is defined as the
amount of insulin that will lower the blood glucose of a healthy
2 kg rabbit that has fasted for 24 hours to 45 mg/dL within 5
hours [18].

Proceeding forward, we present the control objective and the
methodology utilized in order to reach it. The tools explored
for this purpose will be duly discussed.
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TABLE I
DESCRIPTION OF EXTENDED MINIMAL MODEL PARAMETERS.

Parameters Description
SG [min−1] glucose effectiveness per unit distribution volume
GB [mg/dL] basal plasma glucose concentration
tmaxG(t) [min] time-to-maximum glucose absorption
V [dL/kg] glucose distribution volume
p2(t) [min−1] rate of disappearance of the interstitial insulin effect
SI(t) [min−1 per µ U/mL] insulin sensitivity
IB(t) [mU/dL] basal plasma insulin concentration
p3(t) [min−1] rate constant describing the dynamics of glucagon action
SN (t) [min−1 por pg/mL] glucagon sensitivity
NB(t) [pg/mL] basal plasma glucagon concentration

III. CONTROL OBJECTIVE AND METHODOLOGY

The goal of this project is to ensure the regulation of
glycemia in a patient with T1DM. Mathematically, it can be
represented through output error stabilization:

e(t) = GB − x1(t) , (23)

where GB = 90 mg/dL represents the desired setpoint. This
value was chosen so that the glycemia of the patient with
T1DM remained within the limits considered safe by the
medical community: 80 and 100 mg/dL [1].

Among all the nonlinear control strategies available, we
decided to work with Sliding Modes Controllers (SMC). The
main advantage of a SMC relies on the fact that its design
does not demand the precise knowledge of the model to
be controlled. For controller design, it is sufficient that the
upper and lower bounds of the plant parameters are known.
Knowledge of upper bounds for disturbances is also required.
In this sense, the proposed algorithm is said to be robust with
respect to parametric uncertainties and exogenous disturbances
like food intake.

IV. BIHORMONAL ACTUADOR AND FOOD INTAKE

A. Bihormonal Actuador

Sliding mode controllers have two control actions: a positive
control action, u+, and a negative control action, u−. In this
essay, the positive control action is represented by the amount
of insulin administered in the bloodstream, whilst the negative
control action is represented by the amount of glucagon
administered in the bloodstream. The algorithm decides which
hormone should be injected into the patient at each moment,
and this decision satisfies the following rule:

u+ =

{
% , if u > 0 (sgn(σ) < 0)

0 , otherwise
, (24)

u− =

{
% , if u < 0 (sgn(σ) > 0)

0 , otherwise
, (25)

where % represents the controller modulation function, and
σ represents the sliding variable. With rules (24)–(25) in
mind, one can conclude that insulin and glucagon are never
simultaneously administered.

B. Disturbance - Food Intake

In this research, it is desired that the patient’s blood glucose
be regulated over a period of 24 hours, which is equivalent to
1, 440 minutes. In this context, it is required for the patient
to maintain a regular diet consisting of three meals a day,
scheduled for the following times: 5:00, 12:00 and 18:00. The
food intake modeling was proposed in [6], [20] as:

d(t) =80e
−0,5(t−300)

11(t− 300) + 100e
−0,5(t−720)

11(t− 720)

+ 70e
−0,5(t−1080)

11(t− 1080) , (26)

where d(t) can be understood as an exogenous disturbance
of the system. Therefore, it is assumed that each meal may
represent a different rate of appearance of blood glucose.
Figure 1 depicts the effect of meal intake over the patient
glycemia.
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Fig. 1. Glucose concentration resulting from ingested meals along the day.

Hereupon, observe the system (1)–(3). Note the disturbance
appears in equation (1), whilst the positive and negative control
actions, u+ and u−, respectively, appear in equations (2) and
(3).

Thus, the disturbances are said to be unmatched [19]. It
generates an additional challenge in the controller design, since
the control gain will have to upper bound the perturbation and
its derivatives in amplitude.

V. HOSM EXACT DIFFERENTIATOR
Exact differentiators are based on higher order sliding

modes (HOSM). This type of tool is able to provide the exact
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derivative of the output error e ∈ R and ensure the attenuation
of small high frequency noises [21]. Its structure is given by:

ζ̇0=v0 = −λ0C
1

p+1 |ζ0 − e(t)|
p

p+1 sgn(ζ0 − e(t)) + ζ1,

...

ζ̇i=vi=−λiC
1

p−i+1 |ζi−vi−1|
p−i

p−i+1 sgn(ζi−vi−1)+ζi+1,
...

ζ̇p=−λpCsgn(ζp − vp−1) ,

(27)

where λi are appropriate constants, chosen recursively; C is
an appropriate constant, such that C ≥ |e(ρ)(t)|; the state is
described by ζ = [ζ0, . . . , ζρ−1]T ; and p = ρ − 1 repre-
sents the order of the differentiator. Therefore, the following
equalities

ζ0 = e(t) , ζi = e(i)(t) , i = 1 , . . . , p , (28)

are established in finite time [21], provided that the signal,
e(ρ)(t), be uniformly bounded, as assumed in the HOSM
differentiator.

As ρ = 2, knowing that the plant has dynamics given by
(1)–(4), from the regulation error (23), it is possible to show
that the following inequality is satisfied:

|ë(t)| = |(−S2
G − p2SIIB + p3SNNB)x1(t)

+ SGGB(x2(t)− x3(t))− (2SG + p2)x1(t)x2(t)

+ (2SG + p3)x1(t)x3(t)− x1(t)x
2
2(t)− x1(t)x

2
3(t)

+ 2x1(t)x2(t)x3(t) +
d(t)

tmaxGV
(SG + x2(t)− x3(t))

−
ḋ(t)

tmaxGV
+ S

2
GGB + p2SIx1(t)u

+ − p3SNx1(t)u
−|

≤
(
S̄

2
G + p̄2S̄I ĪB + p̄3S̄N N̄B + 2S̄GḠB +

2d̄

tmaxG V

+ max{p̄2, p̄3}+ max{S̄I , S̄N}%
)
χ

+ (4S̄G + p̄2 + p̄3)χ
2

+ 4χ
3

+
S̄Gd̄+

¯̇
d

tmaxG V
+ S̄

2
GḠB , (29)

where the parameters are upper bounded by (17)–(20), the
disturbance, d(t), and its derivative, ė(t), satisfy (22) and the
state norm is upper bounded at least locally, by |x(t)| < χ.
Assuming that these upper bounds are constant, and are
available for designing the controller, an upper bound for the
absolute value of the second time-derivative of e(t) can be
obtained through

C =

(
S̄

2
G + p̄2S̄I ĪB + p̄3S̄N N̄B + 2S̄GḠB +

2d̄

tmaxG V

+ max{p̄2, p̄3}max{S̄I , S̄N}%
)
χ+ (4S̄G + p̄2 + p̄3)χ

2

+ 4χ
3

+
S̄Gd̄+

¯̇
d

tmaxG V
+ S̄

2
GḠB . (30)

Throughout this work, the following exact differentiator will
be used:

ζ̇0 = v0 = −λ0C
1
2 |ζ0 − e(t)|

1
2 sgn(ζ0 − e(t)) + ζ1, (31)

ζ̇1 = −λ1Csgn(ζ1 − v0) , (32)

with λ0 = 5 and λ1 = 3 and gain C given in (30).
The values that have been used in implementing the control

system and its parameters are given by: p2 = 0, 003, p̄2 =
0, 03; p3 = 0, 01; p̄3 = 0, 14; SN = 0, 8 × 10−4; S̄N = 2 ×
10−4; SI = 6, 8×10−4; S̄I = 8, 6×10−4; S̄G = 0, 015; N̄B =

60; ĪB = 20; V = 1, 5; tmaxG = 65; d̄ = 110; ¯̇
d = 60 and

% = 100. These values were chosen from the numeric values
of the parameters (5)–(10) which, in turn, can be consulted in
[15].

VI. FIRST-ORDER SLIDING MODE CONTROLLER

The sliding mode control is a well documented control
technique, and its fundamentals can be found in [19] and [22].

In what follows, we present the local analysis of the first-
order sliding mode controller, by means of the ideal sliding
variable. Thus, it is assumed, initially, that the error derivatives
are available.

Theorem 1: Consider the system described by (1)–(4) and
the bounds (17)–(20). Thus, it is possible to find a sliding
mode control law, u, given by:

u = −%sgn(σ(t)) , % > 0 , (33)
σ(t) = ė(t) + l0e(t) , l0 > 0 , (34)

with constant and sufficiently large modulation function, %,
and sliding variable σ(t), such as, the ideal sliding mode,
σ(t) = 0, occurs in finite time ts > 0. Besides, under the
sliding regime, the error convergence is exponential (e(t) =
e−l0(t−ts)e(0) , ∀t ≥ ts).

Proof: Consider the following candidate Lyapunov func-
tion

V (t) = σ2(t) , (35)

where the time-derivative of V is V̇ (t) = 2σ(t)σ̇(t). Thus,

V̇ (t) = 2σ(t)(ë(t) + l0ė(t)) . (36)

Differentiating equation (23) yields

ė(t) =− ẏ(t) = SGx1(t) + x1(t)x2(t)− x1(t)x3(t)

− SGGB −
1

tmaxGV
d(t) ,

ë(t) =(−S2
G − p2(t)SI(t)IB(t) + p3(t)SN (t)NB(t))x1(t)

+ SGGB(x2(t)− x3(t))− (2SG + p2(t))x1(t)x2(t)

+ (2SG + p3(t))x1(t)x3(t)− x1(t)x
2
2(t)− x1(t)x

2
3(t)

+ 2x1(t)x2(t)x3(t) +
1

tmaxGV
(SG + x2(t)− x3(t))d(t)

−
1

tmaxGV
ḋ(t) + S

2
GGB + p2(t)SI(t)x1(t)u

+

− p3(t)SN (t)x1(t)u
−
. (37)

The time-derivative of (34) is given by

σ̇(t) = ë(t) + l0ė(t)

= (−S2
G − p2(t)SI(t)IB(t) + p3(t)SN (t)NB(t))x1(t)

+ SGGB(x2(t)− x3(t))− (2SG + p2(t))x1(t)x2(t)

+ (2SG + p3(t))x1(t)x3(t)− x1(t)x
2
2(t)− x1(t)x

2
3(t)

+ 2x1(t)x2(t)x3(t) +
1

tmaxGV
(SG + x2(t)− x3(t))d(t)

−
1

tmaxGV
ḋ(t) + S

2
GGB + l0SGx1(t) + l0x1(t)x2(t)

− l0x1(t)x3(t)− l0SGGB −
l0

tmaxGV
d(t)

+ p2(t)SI(t)x1(t)u
+ − p3(t)SN (t)x1(t)u

−
, (38)
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Therefore, the first derivative of the candidate Lyapunov
function is given by:

V̇ (t) =2
{

(−S2
G − p2(t)SI(t)IB(t)

+ p3(t)SN (t)NB(t))x1(t)σ(t) + SGGB(x2(t)

− x3(t))σ(t)− (2SG + p2(t))x1(t)x2(t)σ(t)

+ (2SG + p3(t))x1(t)x3(t)σ(t)− x1(t)x
2
2(t)σ(t)

− x1(t)x
2
3(t)σ(t) + 2x1(t)x2(t)x3(t)σ(t)

+
1

tmaxGV
(SG + x2(t)− x3(t))d(t)σ(t)

−
1

tmaxGV
ḋ(t)σ(t) + S

2
GGBσ(t) + l0SGx1(t)σ(t)

+ l0x1(t)x2(t)σ(t)− l0x1(t)x3(t)σ(t)− l0SGGBσ(t)

−
l0

tmaxGV
d(t)σ(t) + p2(t)SI(t)x1(t)u

+
σ(t)

−p3(t)SN (t)x1(t)u
−
σ(t)

}
. (39)

Equation (39) can be upper bounded by:

V̇ (t) ≤ 2
{

(S
2
G + p2(t)SI(t)IB(t)

+ p3(t)SN (t)NB(t))|x1(t)||σ(t)|
+ SGGB(|x2(t)|+ |x3(t)|)|σ(t)|
+ (2SG + p2(t))|x1(t)||x2(t)||σ(t)|
+ (2SG + p3(t))|x1(t)||x3(t)||σ(t)|

+ |x1(t)||x2
2(t)||σ(t)|+ |x1(t)||x2

3(t)||σ(t)|
+ 2|x1(t)||x2(t)||x3(t)||σ(t)|

+
1

tmaxGV
(SG + |x2(t)|+ |x3(t)|)|d(t)||σ(t)|

+
1

tmaxGV
|ḋ(t)||σ(t)|+ S

2
GGB |σ(t)|

+ l0SG|x1(t)||σ(t)|+ l0|x1(t)||x2(t)||σ(t)|
+ l0|x1(t)||x3(t)||σ(t)|+ l0SGGB |σ(t)|σ(t)

+
l0

tmaxGV
|d(t)||σ(t)|+ p2(t)SI(t)x1(t)u

+
σ(t)

−p3(t)SN (t)x1(t)u
−
}
. (40)

Since the system parameters are uncertain, by using the
bounds (17)–(21), the inequality (40) can be upper bounded
by:

V̇ (t) ≤2
{[

(S̄
2
G + p̄2S̄I ĪB + p̄3S̄N N̄B)|x1(t)|

+ S̄GḠB(|x2(t)|+ |x3(t)|)
+ (2S̄Gp̄2)|x1(t)||x2(t)|

+ (2S̄G + p̄3)|x1(t)||x3(t)|+ |x1(t)|x2
2(t)

+ |x1(t)|x2
3(t) + 2|x1(t)||x2(t)||x3(t)|

+
1

tmaxG V
(S̄G + |x2(t)|+ |x3(t)|)|d(t)|

+
1

tmaxG V
|ḋ(t)|+ S̄

2
GḠB + l0S̄G|x1(t)|

+ l0|x1(t)||x2(t)|+ l0|x1(t)||x3(t)|+ l0S̄GḠB

+
l0

tmaxG V
|d(t)|

]
|σ(t)|+ p2(t)SI(t)x1(t)u

+
σ(t)

−p3(t)SN (t)x1(t)u
−
σ(t)

}
. (41)

The patient receives insulin (u+ = %) if u > 0. In this case,
sgn(σ) < 0→ σ = −|σ| and u− = 0. So, the inequality (40)

can be rewritten as:

V̇ (t) ≤ 2
{

(S̄
2
G + p̄2S̄I ĪB + p̄3S̄N N̄B)|x1(t)|

+ S̄GḠB(|x2(t)|+ |x3(t)|)
+ (2S̄G + p̄2)|x1(t)||x2(t)|

+ (2S̄G + p̄3)|x1(t)||x3(t)|+ |x1(t)|x2
2(t)

+ |x1(t)|x2
3(t) + 2|x1(t)||x2(t)||x3(t)|

+
1

tmaxG V
(S̄G + |x2(t)|+ |x3(t)|)|d(t)|

+
1

tmaxG V
|ḋ(t)|+ S̄

2
GḠB + l0S̄G|x1(t)|

+ l0|x1(t)||x2(t)|+ l0|x1(t)||x3(t)|+ l0S̄GḠB

+
l0

tmaxG V
|d(t)| − p2(t)SI(t)x1(t)%

}
|σ(t)| . (42)

The patient receives glucagon (u− = %) if u < 0. In this
case, sgn(σ) > 0 → σ = |σ| and u+ = 0. So, the inequality
(40) can be rewritten as:

V̇ (t) ≤ 2
{

(S̄
2
G + p̄2S̄I ĪB + p̄3S̄N N̄B)|x1(t)|

+ S̄GḠB(|x2(t)|+ |x3(t)|) + (2S̄G + p̄2)|x1(t)||x2(t)|

+ (2S̄G + p̄3)|x1(t)||x3(t)|+ |x1(t)|x2
2(t) + |x1(t)|x2

3(t)

+ 2|x1(t)||x2(t)||x3(t)|

+
1

tmaxG V
(S̄G + |x2(t)|+ |x3(t)|)|d(t)|

+
1

tmaxG V
|ḋ(t)|+ S̄

2
GḠB + l0S̄G|x1(t)|

+ l0|x1(t)||x2(t)|+ l0|x1(t)||x3(t)|+ l0S̄GḠB

+
l0

tmaxG V
|d(t)| − p3(t)SN (t)x1(t)%

}
|σ(t)| . (43)

Since x1 stands for glucose, it is straightforward to conclude
that x1 > 1 ∀t. Therefore, the inequalities (42) and (43) can
be upper bounded by

V̇ (t) ≤ 2
{

(S̄
2
G + p̄2S̄I ĪB + p̄3S̄N N̄B)|x1(t)|

+ S̄GḠB(|x2(t)|+ |x3(t)|)
+ (2S̄G + p̄2)|x1(t)||x2(t)|

+ (2S̄G + p̄3)|x1(t)||x3(t)|+ |x1(t)|x2
2(t)

+ |x1(t)|x2
3(t) + 2|x1(t)||x2(t)||x3(t)|

+
1

tmaxG V
(S̄G + |x2(t)|+ |x3(t)|)|d(t)||

+
1

tmaxG V
|ḋ(t) + S̄

2
GḠB + l0S̄G|x1(t)|

+ l0|x1(t)||x2(t)|+ l0|x1(t)||x3(t)|+ l0S̄GḠB

+
l0

tmaxG V
|d(t)|−min{p

2
, p

3
}min{SI , SN}%

}
|σ(t)| . (44)

From (44), an upper bound to time-derivative Lyapunov
function can be described by:

V̇ (t) ≤ 2
{(
S̄

2
G + p̄2S̄I ĪB + p̄3S̄N N̄B + 2S̄GḠB + l0S̄G

+
2

tmaxG V
|d(t)|

)
|x(t)|+(4S̄G+p̄2+p̄3+2l0)|x(t)|2

+ 4|x(t)|3+
S̄G+l0

tmaxG V
|d(t)|+

1

tmaxG V
|ḋ(t)|+S̄2

GḠB

+l0S̄GḠB −min{p
2
, p

3
}min{SI , SN}%

}
|σ(t)| . (45)

The meal disturbance, d(t), and its first time-derivative, ḋ(t),
are bounded by some real positive number described in (22),
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such that,

V̇ (t) ≤ 2
{(
S̄

2
G + p̄2S̄I ĪB + p̄3S̄N N̄B + 2S̄GḠB + l0S̄G

+
2

tmaxG V
d̄

)
|x(t)|+ (4S̄G + p̄2 + p̄3 + 2l0)|x(t)|2

+ 4|x(t)|3 +
S̄G + l0

tmaxG V
d̄+

1

tmaxG V
¯̇
d+ S̄

2
GḠB

+l0S̄GḠB −min{p
2
, p

3
}min{SI , SN}%

}
|σ(t)| . (46)

Let us define k1 = S̄2
G + p̄2S̄I ĪB + p̄3S̄N N̄B + 2S̄GḠB +

l0S̄G+ 2
tmaxG V d̄, k2 = 4S̄G+ p̄2 + p̄3 +2l0, k3 = 4 and k4 =

S̄G+l0
tmaxG V d̄+ 1

tmaxG V
¯̇
d+ S̄2

GḠB + l0S̄GḠB . Thus, equation
(46) becomes:

V̇ (t) ≤ 2
{
k1|x(t)|+ k2|x(t)|2 + k3|x(t)|3 + k4

−min{p
2
, p

3
}min{SI , SN}%

}
|σ(t)| . (47)

It is worth mentioning that the state is bounded, since we
are dealing with a biologycal system. Thus, we suppose there
exists a known upper bound such that the inequality |x(t)| < χ
is satisfied. Therefore, equation (47) can be rewritten as

V̇ (t) ≤ 2
{
k1χ+ k2χ

2
+ k3χ

3
+ k4

−min{p
2
, p

3
}min{SI , SN}%

}
|σ(t)| . (48)

The modulation function is defined as

% =
k1χ+ k2χ

2 + k3χ
3 + k4 + δ

min{p
2
, p

3
}min{SI , SN}

, δ > 0 . (49)

If (49) is replaced in (48), then we can readily obtain

V̇ (t) ≤ −2δ|σ(t)| , t ≥ 0 . (50)

Let σ̃(t) := |σ(t)| =
√
V (t) be the auxiliary variable. Thus,

we have ˙̃σ(t) = V̇ (t)

2
√
V (t)

. Proceeding forward, we divide both

sides of (50) by 2
√
V (t), which implies that

V̇ (t)

2
√
V (t)

≤ −2δ
|σ(t)|

2
√
V (t)

, (51)

which is identical to

˙̃σ(t) ≤ −δ , t ≥ 0 . (52)

By using the comparison lemma, there exists an upper bound
σ̄(t) of σ̃(t) that satisfies the differential equation

˙̄σ(t) = −δ , σ̄(0) = σ̃(0) ≥ 0 , t ≥ 0 . (53)

Integrating both sides of equation (53) yields

σ̄(t)− σ̄(0) = −δt t ≥ 0 . (54)

Therefore, the following inequality is valid:

σ̄(t) = −δt+ σ̄(0) , t ≥ 0 . (55)

Since σ̄ ≥ 0 is continuous, σ(t) becomes identically null
∀t ≥ t1 = δ−1σ̄(0). Proceeding forward, we conclude that
there exists a finite time 0 < ts ≤ t1, where the sliding mode
starts such that σ(t) = 0, ∀t ≥ ts. From (34), one can conclude
that ė = −l0e and then the error e(t) converges exponentially
to zero.

VII. SIMULATION RESULTS

In this section, we present the stability analysis of a
first-order sliding mode controller in cases where the exact
differentiators are used for computing the error derivatives.
Two strategies have its performances evaluated: the traditional
sliding mode controller, which has a discontinuous control
action, and the sliding mode controller with boundary layer,
whose control action is smooth.

A. Discontinuous Sliding Mode Controller with Estimate of
Sliding Variable Using Exact Differentiator

Although Theorem 1 shows that it is possible to find a
constant % that locally guarantees the sliding mode, the control
law (33)–(34) cannot be implemented, since signal ė is not
available. Thus, remembering equation (28), the control law
is adapted and becomes:

u = −%sgn(σ̂(t)) , % > 0 , (56)
σ̂(t) = ζ1(t) + l0ζ0(t) , (57)

where σ̂(t) is an estimate for σ(t), using (31) and (32).
In the presented simulations, the controller (56)–(57) was

implemented with % = 100, l0 = 1 [min−1] and with estimated
variables ζ0 and ζ1 given by (31)–(32). As for the unit of
%, it should be mentioned that this constant is measured in
[µUmin /mg] during the positive control action; and it is
measured in [pg/dl] during the negative control action.

Next, the simulation results are presented for the first-order
sliding mode controller.
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(a) Blood glucose concentration.
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(b) Sliding variable estimate σ̂.

Fig. 2. Sliding surface and glycaemia.
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(a) Plasma insulin concentration.
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(b) Plasma glucagon concentration.

Fig. 3. Insulin and Glucagon.

Figure 2(a) illustrates the ability of the controller to safely
regulate the blood glucose and avoid hypoglycemic and hy-
perglycemic episodes over the period assessed.
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(a) Comparison between ζ0 and e.
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(b) Comparison between ζ1 and ė.

Fig. 4. Exact differentiator.

Figures 3(a) and 3(b) demonstrate the role of bi-hormonal
actuator, in which u+ stands for insulin and u− represents the
glucagon.

Figures 4(a) and 4(b) attest in favour of the transient
briefness of variables ζ0 and ζ1. Therefore, the ideal sliding
variable σ can be constructed from σ̂, which in turn guarantees
that the ideal sliding mode σ = 0 is reached. It is noteworthy
that the signals illustrated in Figure 4(a) are measured in
[mg/dL], whilst the signals represented in Figure 4(b) are
measured in [mg/dL−1 min−1].

B. Sliding Mode Controller with Estimate of Sliding Variable
Using Exact Differentiator and Boundary Layer

There are some problems that are intrinsic to the traditional
sliding mode controller, such as: discontinuous control action
and the so-called chattering effect. In order to mitigate these
effects, we utilize the boundary layer technique [23].

The boundary layer implementation occurs through the the
control law design. In this sense, instead of using the relay,
we use a control action given by the following law:

u = −% σ̂

|σ̂|+ δ
, (58)

where 0 < δ < 1. Proceeding this way, attenuation of
chattering effect is expected to be achieved.

As is evident from Figures 5(a) and 5(b), the controller per-
formance is acceptable and the chattering effect was vanished
from control action.

In the remaining aspects, the issues that are to be under-
scored in Figures 6 and 7 are not different from those referred
to Figures 3 and 4, respectively.
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(b) Controller action.

Fig. 5. Glycaemia and Control Action.
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(a) Plasma insulin concentration.
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(b) Plasma glucagon concentration.

Fig. 6. Insulin and Glucagon.
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Fig. 7. Exact Differentiator.

VIII. CONCLUSION

In this work, a first-order sliding mode control strategy was
used in order to safely regulate the blood glucose concentration
of a T1DM patient. From a control point of view, this is
a challenging problem, since the process is represented by
a nonlinear, time-varying plant where the parameters where
considered uncertain. Meals of varying carbohydrate content
are understood as unmatched disturbances, represented by
d(t). Moreover, system output has relative degree ρ = 2 with
regard to control action, and since the model adopted describes
a biological system, the control problem must be treated as a
strictly positive strategy.

Such challenges were overcome by means of parametric
upper bounds, disturbances upper bounds, an bihormonal ac-
tuator and the sliding mode control theory. A rigorous analysis
through Lyapunov functions and numerical simulations show
that the proposed control strategy was efficient in the glycemic
regulation process.
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